

Welcome Small Data Network VTC 2019

Wen Cheng Chong CTO, Kepler wchong@kepler.space A mission to provide connectivity for space

Building assets for ground communications and growing long term to in-space connectivity

Kepler Today

12 Months Napkin to Orbit

VTC 2019

38 Person Team

Proprietary Satellite

Acquired Spectrum

Government Contracts

Where We Operate

MAIN OFFICES

Headquarters and R&D located in Toronto,

Canada

GROUND INFRASTRUCTRE

Locations in Inuvik (Canada), Svalbard (Norway), and New Zealand

Kepler's Satellites

Current

Next Year

Ku-Band

Ku-Band

S-Band

Global Data Service

everywhereIOT

Wideband and Narrowband Services

everywherelOT™

A cellular-like and globally-available connection for Internet of Things devices

VTC 2019

Global Data Service™

A hybrid wideband satellite service, routing data over multiple satellite networks to optimize bandwidth and reduce costs

Why Satellite IoT?

Terrestrial ISM Spectrum

Competing Frequencies

VTC 2019

2G/3G Network Sunset

Ongoing shutdown Legacy hardware **Transition starting**

Inconsistent rollout of CAT NB/M1

Terrestrial vs. Satellite IoT

Frequency Standards

Different frequencies needed for different geographical areas

One frequency works worldwide

Terrestrial vs. Satellite IoT

Coverage and Throughput

Source: Hewlett Packard Enterprise (2016). Low Power Wide Area (LPRA) networks play an important role in connecting a range of devices, Business white paper. Available at: <u>https://h20195.www2.hpe.com/V2/getpdf.aspx/4AA6-5354ENW.pdf?ver=3.2</u>

Terrestrial vs. Satellite IoT

Network Diagram

Source: London Economics analysis

Technical Challenges in Satellite IoT

All About Orbits

Low Earth Orbit (LEO)

- More bandwidth and lower power ground equipment
- Steerable ground antenna needed for broadband
- Many (>50) satellites needed for real-time coverage
- Kepler satellites

Medium Earth Orbit (MEO)

- Medium bandwidth, medium power ground equipment
- Steerable ground antenna needed for broadband
- Modest (>5) satellites needed for real-time coverage
- GPS satellites

Geostationary Earth Orbit (GEO)

- Low bandwidth and high power ground equipment
- Simple fixed antenna needed for broadband
- Single satellite needed for regional real-time coverage
- Traditional telecom satellites

LEO zone	MEO zone
Low earth orbit	Medium earth orbit
160 km - 2000 km	2000 km - 34000 km
1	
1	

Earth radius 6378 Km / 3963 mi GEO zone

Geostationary Equatorial Orbit

= 35,000 km

VTC 2019

Technical Challenges - Satellite Platforms

(Low Cost) Satellite Anatomy

Technical Challenges - Satellite IoT

User Terminal

Bi-Directional

Low Power

Low Cost

Technical Challenges - Satellite IoT

Link Budget

VTC 2019

Technical Challenges - Satellite IoT

Doppler Shift

VTC 2019

Technical Challenges - IoT

Multi-Access Schemes

2019

Ц С

Each satellite has a large footprint which translates to supporting >20,000 terminals simultaneously

All operate with potentially **different Doppler shifts** and **power levels**

Technical Challenges - IoT

Multi-Access Schemes

Challenging channel conditions for synchronization (both time and frequency)

Uncoordinated/Random access

Potentially mutually interfering signals

Technical Challenges – Satellite IoT

Regulatory and Spectrum

Frequency diagram sourced from Southwest Antennas, Inc. (2016). Modern Co-Site RF Interference Issues and Mitigation Techniques. Based on "Frequency Band Comparison" by Treinkvist. Please see: <u>https://southwestantennas.com/sites/default/files/white-</u> poper/Whitepaper. Modern-Co-Site-Interference-Mitigation-Techniques. Southwest-Antennas.pdf

Technical Challenges – Satellite IoT

Other

Requirement for Mobile Satellite Services – Listen before transmit

Data landing rights – deploy ground station on demand

Data integrity and security - encryption

Market Opportunities

Asset Tracking

Smart Agriculture

Maritime

Largest Segment

Fastest growing

Key Verticals

VTC 2019

Key Verticals

Key Verticals

VTC 2019

Kepler's IoT Solution

Kepler's Solutions

How does Kepler deal with the challenges of IoT?

Space Segment Average Latency

The Next Frontier : TARS

- Reconfigurable SDR
- High gain Ku antenna for backhaul
- High gain S-band phased array antenna
- Launching end of 2019/Q1 2020

1st Generation User Terminal

- 3" x 4" footprint
- 2 KB per day uplink capacity
- Bi-directional communication
- Low-profile antenna (<1")

Protocol Selection

- Store raw IQ samples on-orbit and forward to ground station for processing
- Experimented with various spread spectrum technologies in the lab environment (LoRA, RPMA, E-SSA)
- Both user terminal and satellite are fully reconfigurable
- TARS is an on-orbit laboratory to experiment with various protocols in 2020 (perhaps SIC)

Thank You

Wen Cheng Chong CTO, Kepler www.kepler.space wchong@kepler.space careers@kepler.space