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Motivation behind Research Agenda:
Can One Discern the Future of Wireless?
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Mobile Device Market Penetration

There are now more subscribed wireless devices than
humans on Earth
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Clarity of Vision — Reaching the Limit
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Visual Acuity and Display Technology

Screen Distance
The distance at which the super retina HD
display matches this resolution is

1
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5.8 inch

2436 x 1125 Mobile VR Headsets

458 ppi

Apple Super Retina HD

©Oculus Rift
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Content-Rich Applications

Video and Mobile Statistics
» 63% of all US online traffic comes from
smartphones and tablets - swne Tempic

» More than 70% of YouTube viewing
happens on mobile devices - comscore

» 65% of all digital media time is spent on
mObI|e deV|CeS — Business2Community
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Options to Stay the Course

Spend More Time on Mobile Devices
Average time spent on mobile phone in US is 3h45m per day

— eMarketer

Wait for Eye Evolution

A‘f&jﬁ

Diversify User Population

(©Ravishly

(© Dreamworks

@©Asurobson
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Summary of Quality of Experience

Current Wireless Landscape

» Growth and Market Penetration: Near saturation

> Number of connected wireless devices exceeds world population
> Almost every human who wants mobile phone has one (or more)

» Screen Quality: At limit of eye acuity

» Screens are near boundary of visual resolution
> Viewing distance is constrained by amplitude of accommodation

» Content-Rich Apps: Video watching & gaming are prevalent

» On average, a person spends 4 hours on mobile device per day
> More videos are watch on phones than elsewhere

Wireless Research and the Future

What’s Next?
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The Rise of the Machine

(©Warner Bros
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The Rise of the Machine

Internet of Things
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Contrasting Machines and Human Behaviors

ot <> September 2019 QO @ - B e @

Typical Human Calendar
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» YouTube video earns 1 view =
when watched for > 30 sec -

» 47% of visitors expect website
to load in < 2 sec

» Callers notice roundtrip voice
delays of > 250 ms

Machine Scheduler

» OS timeslice =~ 10 ms

> LTE schedule ~ 1 ms
(transmission time interval)

Signal
handiing

——

creation &
termination

Paging
page
replacement
Page
cache

Unux emel
Process.
Scheduler

» Microcontroller interrupt
latency is < 10 us

(©ScotXW
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Information and Inference

IEEE TRANSACTIONS ON SIGNAL PROCESSING., VOL. 51, NO. 2, FEBRUARY 2003

Decentralized Detection in Sensor Networks

Jean-Frangois Chamberland, Student Member, IEEE, and Venugopal V. Veeravalli, Senior Member, IEEE

Ab. In this paper, we i a binary
detection problem in which a network of wireless sensors provides
relevant information about the state of nature to a fusion center.
Each sensor transmits its data over a multiple access channel.
Upon reception of the information, the fusion center attempts
to accurately reconstruct the state of nature. We consider the
scenario where the sensor network is constrained by the capacity
of the wireless channel over which the sensors are trans

al

For the problem of detecting deterministic signals in additive
Gaussian noise, we show that having a set of identical binary
sensors is asymptotically optimal, as the number of observations
per sensor goes to infinity. Thus, the gain offered by having more
sensors exceeds the benefits of getting detailed information from
cach sensor. A thorough analysis of the Gaussian case is presented
along with some extensions to other observation distributions.

Index Te Bayesi imati i detection,
sensor network, wireless sensors.

problem have been studied in the past. Notably, the class of de-
centralized detection problems where each sensor must select
one of D possible messages has received much attention. In this
setting, which was originally introduced by Tenney and Sandell
[1], the goal is to find what message should be sent by which
sensor and when. See Tsitsiklis [2] and the references contained
therein for an elaborate treatment of the decentralized detection
problem. More recently, the problem of decentralized detection
with correlated observations has also been addressed (see, e.g..
[3] and [4]).

In essence, having each sensor select one of ) possible mes-
sages upper bounds the amount of information available at the
fusion center. Indeed, the quantity of information relayed to the
fusion center by a network of L sensors, each sending one of
D possible messages, does not exceed L[log, D] bits per unit
time. In the standard decentralized problem formulation, the
number of sensors L and the number of distinct messages D are

Payload Design Guideline
» Most of information for inference is contained in first few bits!
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Information and Inference

A Telemetering System by Code Modulation
—A-2 Modulation*

H. INOSEft, MEMBER, 1RE, Y. YASUDAY, anp J. MURAKAMI}

Summary—A  communication system by code modulation is  the input signal before it enters the modulator so as to

d which i an ion process in the original ’ - . : et .
delta modulsuun system and is named delta-sigma modulation gener%te output p ulsfs canying Ame ln?olmdﬁlon corre-
after its ism. It has an over delta SPonding to the amplitude of the input signal. The delta-

in dc level ission and stability of perfm-mmce, sigma modulation (A-ZM) system is a realization of this
although both requu'e jally an equal idth and principle.
of circuitry. An 1 ing system loying delta-
sigma modulation is also described. Tue PRINCIPLE OF THE A-ZM SYSTEM

Payload Design Guideline

» Signals are tracked well using small, yet frequent updates

» A-Y modulation
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Losing the Connection

Emerging M2M Traffic Characteristics

» Device density — Massive versus small
» Connectivity profile — Sporadic versus sustained

» Packet payloads — Minuscule versus moderate-to-long

Anticipated traffic characteristics invalidate the
acquisition-estimation-scheduling paradigm!

Cost A Reward Cost A Reward
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Revival of Uncoordinated Access

A New Reality

v

Must address sporadic nature of machine-driven communications

v

Transfer of small payloads without ability to amortize cost of
acquiring channel and buffer states over long connections

v

Preclude use of opportunistic scheduling

v

Evinced by departure from scheduling-based solutions

Communication and Identity

When number of devices is massive, with only subset of them active,
problem of allocating resources (e.g., codebook, subcarriers, signature
sequences) to every user as to manage interference becomes very complex

Uncoordinated, Unsourced MAC
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Uncoordinated Multiple Access Channel (MAC)

—>( Device 1 )—>(Encoder 1

—>(Device 2]—>(Encoder 2

—>(Device 3)—>(Encoder 3 MAC Joint
—>(Device 4)—>(Encoder . Channel Decoder
—>(Device 5]—>(Encoder 5

—>(Device 6)—>(Encoder (9

LoRa-Inspired Parameters

» K active users out of Ki. total users, K € [25 : 300]
» Each user has B-bit message, B is small ~ 100
» N channel uses available, N = 30,000

M. Berioli, G. Cocco, G. Liva and A. Munari, Modern Random Access Protocols. Foundations and Trends in Networking, 2016

F. Clazzer, A. Munari, G. Liva, F. Lazaro, C. Stefanovic, P. Popovski, From 5G to 6G: Has the Time for Modern Random Access
Come?, arXiv 2019
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Uncoordinated MAC Frame Structure

» K active devices out of many, many devices

» Framework of gathering channel and queue states does not apply

Frame Length

| Beacon | Inference | Slot 1 | Slot 2 | oo | Slot J — 1 | Slot J | Feedback |

| Population Estimation ‘ Slot Count Reporting |

» Beacon employed for coarse synchronization
» Same devices transmit within frame

» Each device may or may not use slot

X. Chen and D. Guo. Many-access channels: The Gaussian case with random user activities. 1SIT, 2014 16/ 59



Uncoordinated and Unsourced MAC

’
i

—)(Message 1)—>( Encoder
—)(Message 2)—')[ Encoder
—>(Message 3)—>( Encoder
—)[Message 4)—;}[ Encoder
'
—>(Message 5)—5)( Encoder

MAC Joint
Channel Decoder

Without Personalized Feedback Math Model

> All devices employ same encoder _ .

y= Ziesa Xi+n
where x; = f(w;) is codeword,
only depends on message

> No explicit knowledge of identities
» Need only return unordered list

Y. Polyanskiy. A Perspective on Massive Random-Access. ISIT, 2017
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Gaussian Random Codes & Performance Bounds

A perspective on massive random-access

Yury Polyanskiy

Abstract—This paper di: the ary
problem of providing multiple-access (MAC) to a mas-
sive number of uncoordinated users. First, we define a
random-access code for K,-user Ga n MAC to be a
collection of norm-constrained vectors such that the noi
sum of any K, of Ihcm can be decoded wnh a ),lw:n (sui
ably defined) ity of error. An ility bound
for such codes is proposed and compared against popular
practical solutions: ALOHA, coded slotted ALOHA,
CDMA, and treating interference as noise. It is found out
that as the number of users increases existing solutions
become vastly energy-inefficient.

MAC [11], [12]). Already 30 years ago R. Gal-
lager [13] called for “a coding technology that is appli-
cable for a large set of transmitters of which a \I’l‘hll]
but variable, subset simultaneously use the channel.
It appears (to this author) that this call has not been
completely answered still. One reason for this could be
that the models in each of three categories are different
and thus solutions are not directly comparable. Our
first goal, thus, is to define a notion of random:
code that would appeal to all three communities. Thls
we do next.

Theorem: Fix P’ < P. There exists an (M, n, ¢) random-access code for
the K-user GMAC satisfying power-constraint P and

K .
€ <> iy & min(pt, gt) + po,

where constants pg, p:, and g; are complicated

Y. Polyanskiy. A Perspective on Massive Random-Access. ISIT, 2017 18/ 59



UMAC — Compressed Sensing Interpretation
B W TT]

Information Bits (101010000) |
(T T I T I T M TTITTTTTT]

Message Index (21) l

< awi |

(T

Columns Are Possible Signals

» Bit sequence w; € {0,1}8 converted to index in [1, 28]

» Stack codewords into N x 28 sensing matrix

» Message index determines transmitted codeword
19/ 59



UMAC — Compressed Sensing with Multiple Messages

Collection of Message Indices

I

l

|

T T T TTTTT I T T T T T T TTTIT T

!

!

l

. |

.

Conceptual MAC Framework

» Devices share same codebook (sensing matrix)

» Received signal is sum of K columns plus noise

1
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UMAC — Exact CS Analogy

|eusSig panizoay

Sampling Matrix, N x 28
K-Sparse message vector

Non-negative, integer entries

O T [ TE T T T T[T
s92Ipu| 23essa)

> y=AX+Z with |[X]jo=K
» Dimensionality of CS problem is huge
» Computational complexity of conventional CS solvers: O(poly(28))

21/ 59



Part Il

A Quest for Low-Complexity:
Sparsifying Collision
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Quest for Low-Complexity Unsourced MAC

Idea 1: Stochastic Binning

N symbols

: Slot 0 : Slot 1 : Slot 2 : Slot 3 : Slot 4 : Slot 5 :

Schedule \ / N cacton
Selection
[ ] [
>?(w1) x(W2) X(W3) >?(W4) X(W5) Codewords
t 1 t t t
wi w2 w3 wy Ws Messages

O. Ordentlich and Y. Polyanskiy. Low Complexity Schemes for the Random Access Gaussian Channel. 1SIT, 2017 23/ 59



Caveat — The Poisson Wall

Missed

Opportunities

Sum Reward

Effects of Decoding Threshold

» More slots reduces parameter of
Poisson/binomial distribution

» More slots reduces bit count per
decoded slot

> o J Iog2 (14 JT - SNR) pmf(k)

Mean Throughput

0.20

0.15

0.05

5 10 15 20
Slot Count J

24/ 59



Quest for Low-Complexity Unsourced MAC

Idea 1+-+: Slotted with Successive Interference Cancellation
start end

Y

Leveraging Prior Work on Uncoordinated Access

» K uncoordinated devices, each with one packet to send
» Time is slotted; transmissions occur within slots

» Successive interference cancellation

E. Casini, R. De Gaudenzi, and O. Del Rio Herrero. Contention resolution diversity slotted ALOHA (CRDSA): An enhanced
random access scheme for satellite access packet networks. IEEE Trans on Wireless Comm, 2007
E Paolini, G Liva, M Chiani. Coded slotted ALOHA: A graph-based method for uncoordinated multiple access. IEEE Trans on Info
Theory, 2015 25/ 59



Amenable to Graphical Representation

» Tanner graph representation for transmission scheme
» Variable nodes <+ packets; check nodes <> received signals

> Message-passing decoder <+ peeling decoder for erasure channel

Message Time Bit Check

G. Liva. Graph-based analysis and optimization of contention resolution diversity slotted ALOHA. |IEEE Trans on Comm, 2011

E. Paolini, G. Liva, and M. Chiani. Coded slotted ALOHA: A graph-based method for uncoordinated multiple access. |IEEE Trans
on Info Theory, 2015 26/ 59



Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 | slot2 . slot3 | slot4 . slotb
Cm HCma )
Cm Y m )
i m ) ; T >
- T T T T
device 1 device 2 device 3 device 4

Instance of Random Access
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 | slot4 | slotb

device 1 device 2 device 3 device 4

Step 1

27/ 59



Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 | slot4 | slotb

device 1 device 2 device 3 device 4

Step 1
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 | slot4 | slotb

\{

H

device 1 device 2 device 3 device 4

Step 2
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 | slot4 | slotb

device 1 device 2 device 3 device 4

Step 2
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 | slot4 | slotb

\{

device 1 device 2 device 3 device 4

Step 3
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 | slot4 | slotb

device 1 device 2 device 3 device 4

Step 3
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Decoder — Peeling Algorithm

Joint decoding via successive interference cancellation

slot1 , slot2 , slot3 | slot4 | slotb
A G

\{

device 1 device 2 device 3 device 4

Step 4

27/ 59



Graphical Methods: Tools from Iterative Decoding

v

L(z) =Y, Liz' variable dist. from node

> ANz) =Y, \ix'~t = L/(z)/L'(1) variable dist. from edge
(z) = X2, Riz' check dist. from node

> p(z) =2 pX) " = R'(2)/R'(1) check dist. from edge

v
Y,

iw.p. L (i —1) w.p. A
jwp. R; (=1 wp.pj

V. Zyablov, and M. Pinsker. Decoding complexity of low-density codes for transmission in a channel with erasures. Problemy
Peredachi Informatsii, 1974
M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient erasure correcting codes. |EEE Trans on Info Theory, 2001 28/ 59



Graphical Methods: Tools from Iterative Decoding

v

x: Prob. outgoing message from variable node erased

v

y: Prob. outgoing message from check node erased

erased w.p. x erased w.p. y

if any

(i —1) w.p. A

o
LSE

W dm (1)

» Outgoing variable message is erased when all incoming check
messages are erased

x=E[y"'] =A)

v

Outgoing check message is erased when one incoming variable
message is erased

y=E[1—(1—xy ] =1-p(1-x)

29/ 59



Extrinsic Information Transfer (EXIT) Chart

1
:é\ erased w.p. x
a
5 08| |
x
3
=
© 0.6} s
[}
)
9]
g
e 04} i
5
o
a 0.2 |
—y=1-p(1-x) <)
Il +
> — y=2x) BS
0 | | | |
0 0.2 0.4 0.6 0.8 1 erased w.p. y

x = Pr(out-message variable erased)
Step-by-Step Progression

y=1-p(1-x) x=Ay) (flipped)
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Unsourced MAC — SIC UGMAC Scheme

|

T-user decoder per slot
Interference cancellation

|

Key Features

» Schedule selected based on message bits
» Devices can transmit in multiple sub-blocks

> Scheme facilitates peeling decoder

A. Vem, K. Narayanan, J. Cheng, JFC. A User-Independent Successive Interference Cancellation Based Coding Scheme for the
Unsourced Random Access Gaussian Channel. |IEEE Trans on Comm, 2019

31/ 59



What Really Happens within Slot?

Implementation Notes

» Message is partitioned into two parts w = (wy, wy)

» Every device uses identical codebook built from spatially-coupled
LDPC-type codes tailored to T-user real-adder channel

> w, dictate permutation on encoder and recovered through CS
» Non-negative ¢;-regularized LASSO

A. Vem, K. Narayanan, J. Cheng, JFC. A User-Independent Successive Interference Cancellation Based Coding Scheme for the
Unsourced Random Access Gaussian Channel. |IEEE Trans on Comm, 2019

32/ 59



Limitations of Sparsifying Collisions

Drawbacks of Slots

» Stochastic binning and
expectation of concave rewards

» Second order dispersion effects
comes into play in FBL

» Energy expended solely to
resolving collisions

» Gray slots are discarded during
decoding process (60%)

33/ 59



Part |l

Quest for Low-Complexity:
Coded Compressed Sensing

34/
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Quest for Low-Complexity Unsourced MAC

Idea 2: Divide and Conquer Information Bits
CIC I ]
l Encoding
I I T T IO IO ]

o~/ Y\ Partition

N (e ([ [

Lol b

Distinct Compressive Sensing Instances

» Split problem into sub-components suitable for CS framework
> Get lists of sub-packets, one list for every slot

» Stitch pieces of one packet together using error correction

35/ 59



Coded Compressive Sensing — Device Perspective

B Bits + P Parity Bits
[ | | [ - 1
Allocating Parity Bits l

Coupled

1
L] ]

» Collection of J CS matrices and 1-sparse vectors

» Each CS generated signal is sent in specific time slot

V. Amalladinne, A. Vem, D. Soma, K. R. Narayanan, JFC. Coupled Compressive Sensing Scheme for Unsourced Multiple Access.
ICASSP 2018 36/ 59



Coded Compressive Sensing — Multiple Access

B S R . A
] ]

| |
—
| |
—
| |
—
| |
—

L1 1 [ [l
L1 3 [ [EEEE
L1 3 [N [EEEE
L1 1 [ [l
C 1 C W e (T

List 1 List 2 List 3 List J

» J instances of CS problem, each solved with non-negative LS
» Produces J lists of K decoded sub-packets (with parity)
» Must piece sub-packets together using tree decoder

37/ 59



Coded Compressive Sensing — Stitching Process

— C ol
—
— /. mm
I N R 0w |
1 Tm W

List 1 List 2 List 3

Tree Decoding Principles

» Every parity is linear
combination of bits in
preceding blocks

> Late parity bits offer better
performance

» Early parity bits decrease
decoding complexity

» Correct fragment is on list

38/ 59



Coded Compressive Sensing — Understanding Parity Bits

S |

1 | |

k bits "/ bits

» Consider binary information vector w of length k
» Systematically encoded using generator matrix G, with p= wG
» Suppose alternate vector W is selected at random from {0, 1}¥

Lemma
Probability that randomly selected information vector w;, produces same

parity sub-component is given by

Pr(ﬁ: ﬁr) — 92— rank(G)

Proof: {p=p,} = {WG = w, G} = {W + W, € nullspace(G)}

39/ 59



Coded Compressive Sensing — General Parity Bits

[ wo) [ w [p@)] we) [5R)] w6) [#e)
m } p } }

1 Il Il [l |
r T T T 1

mo A my b m3 I

» True vector (M_;,'O(O), M7;0(1), VI_;,'0 (2)7 M7;0(3))
» Consider alternate vector with information sub-block
(W, (0), w; (1), W;, (2), Wi, (3)) pieced from lists
» To survive stage 3, candidate vector must fulfill parity equations

(W/fo(o) - Wil (0)) [GO,O} = 61></1

N . N . G >
(Wfo(o) - Wi2(0)7 Wi1(1) - Wiz(l)) |:GO,1:| = 01></2
1,1
Go,2 .
(Wi, (0) — Wi (0), Wi, (1) — Wi (1), Wi, (2) — W5 (2)) | Gr2| = O1xsy
Goo
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Coded Compressive Sensing — General Parity Bits

mo m /1 my /2 ms3 /3

[ wo | w [Ao)] we [pa)] #e) [#E)
» When indices are not repeated in (w;,(0), w; (1), w,(2), w;(3)),
probability is governed by

rank 0 G1,1 G1,2

Goo Goi Gop
0 0 Go

» But, when indices are repeated, sub-blocks may disappear

Goolgiiy  Goalynziy  Go2lyi+iy
rank 0 Grilg,ziy  Grolypziy

0 0 G2A’21{,'37g,'2}
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Allocating Parity Bits (approximation)

> [;: # parity bits in sub-block i € 2,...,J,
» L;: # erroneous paths that survive stage i € 2,...,J,

» Complexity Ciree: # nodes on which parity check constraints verified
Expressions for E[L;] and Ciyee
> LijLiy ~ B((Lica + 1)K —1,p;), pi=27", gi=1—p

E[L]] = E[E[L;|L;_1]]
= E[((Li-1 + 1)K — 1)p/]
= piKE[Li_1] + pi(K — 1)

=Y K=(K=1)]]p
r=1 j=r

> Ciree = K+ 2222 [(Li + 1)K]

» [E[Cirec] can be computed using the expression for E[L;]

42/ 59



Optimization of Parity Lengths

> [;: # parity bits in sub-block i € 2,...,J,

» L;: # erroneous paths that survive stage i € 2,...,J,

(Relaxed) Geometric Programming Optimization

g Pl

subject to  Pr(L; > 1) < &tree Erroneous Paths
J

Y li=M-B Total # Parity Bits
i=2

l;€{0,...,N/J} Vie€2,...,J Integer Constraints

» Can be solved using standard convex solver (e.g. CVX)

43/ 59



Choice of Parity Lengths

» K=200,J=11 N/J=15

H Etree ‘ E[Cirec] ‘ Parity Lengths b, ...,/ H
0.006 Infeasible Infeasible
0.0061930 | 3.2357 x 10™* | 0,0,0,0, 15, 15, 15, 15, 15, 15
0.0061931 | 3357300 0,3,8,8,8,8,10,15,15,15
0.0061932 | 1737000 0,4,8,8,8,8,9,15,15,15
0.0061933 | 926990 0,5,8,8,8,8,8,15,15,15
0.0061935 | 467060 1,8,8,8,8,8,8,11,15,15
0.0062 79634 1,8,8,8,8,8,8,11,15,15
0.007 7357.8 6,8,8,8,8,8,8,8,13,15
0.008 6152.7 7,8,8,8,8,8,8,8,12,15
0.02 5022.9 6,8,8,9,9,9,9,9,9,14
0.04 4158 7,8,8,9,9,9,9,9,9,13
0.6378 3066.3 9,9,9,9,9,9,9,9,9,9

44/ 59



Leveraging CCS Framework

CHIRRUP: a practical algorithm for unsourced multiple access

Robert Calderbank, Andrew Thompson
(Submitted on 2 Nov 2018)

Unsourced multiple access abstracts grantless simultaneous communication of a large number of devices (messages) each of which transmits (is
transmitted) infrequently. It provides a model for machine-to-machine communication in the Internet of Things (loT), including the special case of
radio-frequency identification (RFID), as well as neighbor discovery in ad hoc wireless networks. This paper presents a fast algorithm for unsourced
multiple access that scales to 2!°° devices (arbitrary 100 bit messages). The primary building block is multiuser detection of binary chirps which are
simply codewords in the second order Reed Muller code. The chirp detection algorithm originally presented by Howard et al. is enhanced and
integrated into a peeling decoder designed for a patching and slotting framework. In terms of both energy per bit and number of transmitted
messages, the proposed algorithm is within a factor of 2 of state of the art approaches. A significant advantage of our algorithm s its computational
efficiency. We prove that the worst-case complexity of the basic chirp reconstruction algorithm is O[nK(log, n + K)], where n is the codeword
length and K is the number of active users, and we report computing times for our algorithm. Our performance and computing time results
represent a benchmark against which other practical algorithms can be measured.

Subjects: Signal Processing (eess.SP)

Citeas: arXiv:1811.00879 [eess.SP]
(or arXivi1811.00879v1 [eess.SP] for this version)

Submission history
From: Andrew Thompson [view email]
[v1] Fri, 2 Nov 2018 14:25:46 UTC (470 KB)

Which authors of this paper are endorsers? | Disable Mathjax (What is Math/ax?)

» Robert Calderbank, Andrew Thompson on arXiv
» Hadamard matrix based compressing scheme + CSS

» Ultra-low complexity decoding algorithm
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Part IV

Quest for Low-Complexity:
Hybrid and Emerging Paradigms

46/

59



Extending CCS Framework

SPARCs for Unsourced Random Access

Alexander Fengler, Peter Jung, Giuseppe Caire
(Submitted on 18 Jan 2019)

This paper studies the optimal achievable performance of compressed sensing based unsourced random-access communication over the real AWGN
channel. "Unsourced" means, that every user employs the same codebook. This paradigm, recently introduced by Polyanskiy, is a natural
consequence of a very large number of potential users of which only a finite number is active in each time slot. The idea behind compressed sensing
based schemes is that each user encodes his message into a sparse binary vector and compresses it into a real or complex valued vector using a
random linear mapping. When each user employs the same matrix this creates an effective binary inner multiple-access channel. To reduce the
complexity to an acceptable level the messages have to be split into blocks. An outer code is used to assign the symbols to individual messages. This
division into sparse blocks is analogous to the construction of sparse regression codes (SPARCs), a novel type of channel codes, and we can use
concepts from SPARCs to design efficient random-access codes. We analyze the asymptotically optimal performance of the inner code using the
recently rigorized replica symmetric formula for the free energy which is achievable with the approximate message passing (AMP) decoder with
spatial coupling. An upper bound on the achievable rates of the outer code is derived by classical Shannon theory. Together this establishes a
framework to analyse the trade-off between SNR, ity and i rates in the ic infinite limit. Finite

simulations show that the combination of AMP decoding, with suitable approximations, together with an outer code recently proposed by
Amalladinne et. al. outperforms state of the art methods in terms of required energy-per-bit at lower decoding complexity.

Comments: 16 pages, 7 Figures
Subjects:  Information Theory (cs.IT)
Cite as: arXiv:1901.06234 [cs.IT]
(or arXiv:1901.06234v1 [cs.IT] for this version)

» Alexander Fengler, Peter Jung, Giuseppe Caire on arXiv
» Connection between CCS indexing and sparse regression codes

» Circumvent slotting under CCS and dispersion effects
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UMAC - CCS Revisited
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Columns Are Possible Signals

» Bit sequence split into J fragments

» Each bit + parity block converted to index in [1,2M//]

ir

< awi)

» Stack sub-codewords into (N/J) x 2M/J sensing matrices
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UMAC - CCS Unified CS Analogy

Sampling Matrix, N x 28//
J-Sparse message vector
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» Initial non-linear indexing step
» Index vector is J-block sparse

» Connection to sparse regression codes
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UMAC — Exact CS Analogy

Sampling Matrix, N x 28//
J-Sparse message vector
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» Complexity management comes from dimensionality reduction
» Use full sensing matrix on sparse regression codes

» Decode using low-complexity AMP
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The Big MAC

A Joint Graph Based Coding Scheme for the
Unsourced Random Access Gaussian Channel

Asit Pradhan, Vamsi Amalladinne, Avinash Vem, Krishna R. Narayanan, and Jean-Francois Chamberland
Department of Electrical and Computer Engineering, Texas A&M University

Absi This article i a novel
paradigm for the unsourced, uncoordinated Gaussian multiple
access problem. The major components of the envisioned frame-
work are as follows. The encoded bits of every message are
partitioned into two groups. The first portion is transmitted using

sensing portion is key in sidestepping some of the challenges
posed by the unsourced aspect of the problem. The information
afforded by the compressive sensing is employed to create a
sparse random multi-access graph conducive to joint decoding.

for the i random access channel which is closely
related to the unsourced MAC.
In [6], Vem et al. devise a coding scheme which uses a
slotted structure. Therein, information bits are encoded into
using a ination of comp sensing and
low density parity check (LDPC) codes and these codewords
are repeated across several slots. The decoder uses message
passing decoding within each slot and employs s ve
interference cancellation across slots. More recently, in [7]

leverages the lessons learned from
IDMA into creating low-complexity

lladinne et al. cast the MAC as a very large-

setting and its inherent randomness. Under joint message-passing
decoding, the proposed scheme offers superior performance
compared to existin Findings are

sensing problem. They then adopt
a divide-and-conquer approach to obtain a pragmatic, low-
complexity solution. In [8], Fengler et al. propose using the

supported by numerical simulations.
Index Terms—Communication, unsourced mul
joint-Tanner graph, belief propagation, compressive

iple access,
nsing.

» A. Pradhan, V. Amalladinne, A.

IEEE Global Communications Conference, December 2019

message passing (AMP) algorithm as the inner
decoder in combination with the outer decoder found in [7].
This latter scheme represents the current state-of-the-art in
terms of error performance.

Vem, K. Narayanan, JFC
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Sparse IDMA
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» Compressed sensing preamble with information bits

» Sparse random multi-access graph conducive to joint decoding.
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Discussion — Unsourced Multiple Access Channel

Summary

Reviewed several frameworks for unsourced multiple access

v

There are close connections between graph-based codes, compressive
sensing, and UMAC

There remains a gap from information-theoretic results

v

v

v

Many theoretical and practical challenges exist

Current Approach

When carefully designed, single sparse joint Tanner graph that spans
across all transmissions offers state-of-the-art performance

Questions?

54/ 59



level 0

level 1

level 2

level 3

(1,1,1,1)
(1,2,1,1)
(1,2,2,1)
(1,1,3,1)
(1,2,3,1)
(1,2,1,2)
(1,2,2,2)
(1,2,3,2)

,1,3,3)
,2,3,3)
11,1,4)
12,1,4)
(1,2,2,4)
(1,1,3,4)
(1,2,3,4)

Thank You!

This material is based upon work supported, in part, by NSF under Grant No. 1619085
This material is also based upon work support, in part, by Qualcomm Technologies, Inc.,

through their University Relations Program
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Asynchronous UMAC

Asynchronous Neighbor Discovery Using Coupled Compressive Sensing

Vamsi K. Amalladinne, Krishna R. Narayanan, Jean-Francois Chamberland, Dongning Guo

(Submitted on 2 Nov 2018)
The neighbor discovery paradigm finds wide application in Internet of Things networks, where the number of active devices is orders of
magnitude smaller than the total device population. Designing low-complexity schemes for asynchronous neighbor discovery has recently
gained significant attention from the research community. Concurrently, a divide-and-conquer framework, referred to as coupled
compressive sensing, has been introduced for the synchronous massive random access channel. This work adapts this novel algorithm to the
problem of asynchronous neighbor discovery with unknown transmission delays. Simulation results suggest that the proposed scheme
requires much fewer transmissions to achieve a performance level akin to that of state-of-the-art techniques.

Subjects: Signal Processing (eess.SP); Information Theory (cs.IT)
Cite as:  arXiv:1811.00687 [eess.SP]
(or arXiv:1811.00687v1 [eess.SP] for this version)

Building Robust Sensing Matrices

» Extending CCS framework with low sample complexity
> Addressing issues pertaining to asynchrony
» Context of neighbor discovery
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Dealing with Jitter and Asynchrony
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Asynchronous Signals
> ¥ = AX+ Z with ||X]o = K
» A e C(r+1>2% ynknown due to unknown random delays

» Max delay 7 known to the decoder
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Expanded Codebook through Sensing Matrix
el

Expanded Codebook A
(n+T) x 28(T + 1) matrix
Accounts for all possible delays

K out of 28(T + 1) sparse
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» Computational complexity of CS solvers: O(poly(28(T + 1)))
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Hybrid Methods and Alternatives

Intermittent CCS
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» Trading off flexibility and complexity
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